Hydrodynamic Modeling: A Hybrid Approach

Tetsufumi Hirano the Univ. of Tokyo/LBNL

6/9/2010 @The Berkeley School 2010

Outline

- Introduction
 - Motivation
 - A short history of hybrid approaches
 - Importance of hadronic dissipation
- Hybrid approach
 - Initial condition
 - Hydrodynamic evolution
 - Hadronic afterburner
- Results
 - Default setting compared with data
 - Systematic studies on modeling
- Summary

Introduction

Main purpose: Understanding of QCD matter in equilibrium under extreme condition (QGP)
 Equation of state
 Transport coefficients
 Heavy ion collisions at relativistic energies
 Unique opportunity, but complicated dynamics
 Analysis codes play important roles in various fields

- Cosmic microwave background: CAMB, CMBFAST, etc.
- Elementary particle reactions: PYTHIA, HERWIG, etc.
- Dovelopment of analysis code in relativistic

Introduction (contd.)

Hydrodynamics describes dynamics of matter under <u>local</u> thermal equilibrium
 Hydrodynamics can be applicable in the intermediate stage.
 Need modeling before and after hydro regime
 Initial conditions
 Freezeout

Detailed and systematic analysis based on ideal hydro towards quantifying viscous effects

Short History of Hybrid (1+1)D ideal hydro+Urand: Dumitru et al. ('99) ■ mean p_T, HBT, ... (2+1)D ideal hydro + RQMD: Teaney et al. ('01) ■ $v_2(p_T)$, $v_2(cent)$, $v_2(sqrt{s})$, ... Importance of hadronic viscosity: TH and Gyulassy ('05) (3+1)D ideal hydro + JAM: TH et al. ('06) (3+1)D ideal hydro + UrQMD: Nonaka et al. ('06) (3+1)D ideal hydro + UrQMD: Werner et al.('09) ■ v2(eta), ... (2+1)D viscous hydro + UrQMD: Heinz-Song D viscous hydro + UrOMD. Soltz et al

Typical Results So Far

Large suppression in small multiplicity events Teaney et al.('01) TH et al.('07)

Typical Results So Far (contd.)

Suppression in forward and backward rapidity Importance of hadronic viscosity TH et al.('05)

Typical Results So Far (contd. 2)

Mass dependence is o.k. fromMass ordering comes from hydro+cascade. hadronic rescattering effect. When mass splitting appears?Interplay btw. radial and elliptic flows. TH et al.('08)

A Hybrid Approach: Initial Condition

hadron gas

collision axis

Au

QGP fluid

Al

<u>Model</u>* •MC-Glauber •MC-KLN (CGC)

ε_{part}, ε_{R.P.}
 Centrality cut

*H.J.Drescher and Y.Nara (2007

A Hybrid Approach: Hydrodynamics

hadron gas

<u>collision axis</u>

Au

AI

QGP fluid

Ideal Hydrodynamics* •Initial time 0.6 fm/c •Model EoS •lattice-based[#] •1st order

[#]Lattice part : M.Cheng et al. (2008) + resonance gas (Mor

A Hybrid Approach: Hadronic Cascade

hadron gas

QGP fluid

collision axis

Au

Interface Cooper-Frye formula at switching temperature $T_{sw} = 160 \, {\rm MeV}$ Resonance gas model at T=160 MeV Hadronic afterburner Hadronic transport model based on kinetic theory \rightarrow JAM^{*}

*Y.Nara et al., (2000)

Eccentricity Fluctuation

Adopted from D.Hofman(PHOBOS) talk at QM2006

A sample event from Monte Carlo Glauber model

Interaction points of participants vary event by event.

→ Apparent reaction plane also varies. → The effect is significant for smaller system such as Cu+Cu collisions

See also talks by Poskanzer and

Event-by-Event Eccentricity

:y

$$egin{array}{rcl} \sigma_x^2&=&\langle x^2
angle-\langle x
angle^2,\ \sigma_y^2&=&\langle y^2
angle-\langle y
angle^2,\ \sigma_{xy}&=&\langle xy
angle-\langle x
angle\langle y
angle \end{array}$$

$$\langle \cdots
angle = rac{\int d^2 x_{\perp} \cdots s_0(oldsymbol{x}_{\perp})}{\int d^2 x_{\perp} s_0(oldsymbol{x}_{\perp})}$$

 $\langle x \rangle, \langle y \rangle$

 Ψ

$$\varepsilon_{\rm RP} = \frac{\sigma_y^2 - \sigma_x^2}{\sigma_y^2 + \sigma_x^2}$$
$$\varepsilon_{\rm part} = \frac{\sqrt{(\sigma_y^2 - \sigma_x^2)^2 + 4\sigma_x^2}}{\sigma_y^2 + \sigma_x^2}$$
$$\tan 2\Psi = \frac{\sigma_y^2 - \sigma_x^2}{2\sigma_{xy}}.$$

Initial Condition with an Effect of Eccentricity Fluctuation

Reaction plane

Eccentricity w.r.t. Participant Plane

Large fluctuation in small system such as Cu+Cu and peripheral Au+Au Need these effects for apple-to-apple comparison

Caveat in Monte Carlo Approach

How do we consider this? Naïve Glauber calculation: $ho_{
m WS}(ec{x}) = \int \delta^{(3)}(ec{x} - ec{x_0})
ho_{
m WS}(ec{x_0}) d^3ec{x_0}$ **MC-Glauber calculation:** $ho_{\mathrm{WS}}(\vec{x}) \neq
ho(\vec{x}) = \int \Delta(\vec{x} - \vec{x}_0)
ho_{\mathrm{WS}}(\vec{x}_0) d^3 x_0$ $\Delta(ec{x} - ec{x_0}) \;\; = \;\; rac{ heta(r - \mid ec{x} - ec{x_0} \mid)}{V}$ $V = rac{4\pi r^3}{3}, \quad r=\sqrt{}$

Finite nucleon profile

More diffused!

→ Reduction of
eccentricity by ~5-10%
→ Necessity of
re-tuning parameters
in Woods-Saxon
density
→ We have retuned

 $R = 6.38 \text{ fm} \rightarrow 6.42 \text{ fm}$ (Au) $\delta r = 0.535 \text{ fm} \rightarrow a_a Q_a 4.4 \text{ afm}$ PRC79, 064904 (200

Caveat in Monte Carlo Approach 2 2-component model: $rac{dS}{d^2 x_\perp} = C \left[rac{1-\delta}{2} rac{dN_{ m part}}{d^2 x_\perp} + \delta rac{dN_{ m coll}}{d^2 x_\perp} ight]$ Given from Monte Carlo Interaction point (part./coll. Coarse graine Interaction region $r = \sqrt{\frac{\sigma_{\rm in}}{\pi}} \sim 1.15 ~{\rm fm}$ See also, Appendix in H.-J. Drescher and Y. Nara, PRC75, 034905

Matter Profile after Coarse-Graining One typical central event

Eccentricity with Smeared

 $\begin{array}{l} \textbf{|e|}\\ \textbf{~10 \% reduction}\\ around \ N_{part} \textbf{~ 50-100}\\ in the default model\\ (smearing area = \sigma_{in}) \end{array}$

How to quantify smearing area? → Modeling of entropy production and thermalization process: CGC + Glasma? → Open problem: Importance of understanding hydrodynamic initial conditions

Gold and Copper, Deformed?

Radius in Woods-Saxon $R_0 \rightarrow R_0(1 + \beta_2 Y_{20} + \beta_4 Y_{40})$ $\beta_2 = -0.13, \beta_4 = -0.03^*$

P.Filip et al., PRC**80**, 054903(2009).

Oblate Au+Au Collision

Important in very central collision(?)

*P.Möller et al, At. Data Nucl. Data Table 59, 185 (1995)

Deformed Gold and Copper

Effect of deformation is seen only in very central events

Initial Condition Dependence

 $\varepsilon_{\rm MC-KLN} > \varepsilon_{\rm MC-Glauber}$

Steeper Transverse Profile in CGC

Closer to hard sphere than Glauber

Note: Original KLN model (not MC-KLN)

Inputs in Model Calculations

Systematic Studies on Elliptic Flow Default setting as a reference result (Red Line)

- MC-Glauber, ε_{part}, spherical nuclei
- Lattice-based crossover EoS
- Hadronic rescattering
- 1. With rescattering vs. without rescattering
- 2. Lattice-based crossover vs. 1st order phase transition
- 3. ε_{part} VS. $\varepsilon_{R.P.}$
- 4. Glauber vs. CGC (factorized KLN)
- 5 Soherical vs deformed nuclei

Comparison with Data

 Note:
 v2{2}>v2{"true"
 Slight overshoot

 "True":
 J.Y.Ollitrault, A.M.Poskanzer and
 SIght overshoot

 S.A.Voloshin, Phys.Rev.C80, 014904 (2009).
 In peripheral

 STAR:
 PRC72, 014904 (2005) ; PRC
 PRC992 (2010), PHENIX: PRL91,18

Comparison with Data (contd.)

System size dependence
 → Overshoot also in peripheral collisions
 → Room for (tiny) QGP viscosity
 PHOBOS: PRC72, 051901(R) (2005);PRL98, 242302

Effect of Hadronic Rescattering

 v_2 is slightly enhanced in peripheral collisions. \rightarrow Not yet "quenched" at hadronization v_2 in central collisions is generated during the QC

EoS Dependence

1st order phase transition mimics viscous correction No room for QGP viscosity in the 1st order p.t. mod

Effect of Eccentricity Fluctuation

Effect of fluctuation \rightarrow Large in small system Importance of eccentricity w.r.t. participant plane

Initial Condition Dependence

Sensitive to initial models.
Perfect fluid and CGC, compatible?
Need more studies on initial condition and viscosity

Effect of Deformation

Almost no effects in semi-central collisions Small effect in central and peripheral event

Comparison with Data: p_T dist.

 p_T distribution is *output* in hybrid models. \rightarrow At work up to 2-3 GeV/c PHENIX: PRC69,034909(20)

p_T Dist. in Cu+Cu Collisions

Comparison with Data: $v_2(p_T)$

Need (tiny?) viscosity in small system (such as Cu+Cu and peripheral Au+Au collision) Not enough statistics \rightarrow Stay tuned!

STAR: PRC72, 014904(2005)

v₂ vs. Transverse Density

 v_2/ε monotonically increases with transverse density even within ideal hydro QGP. \rightarrow Finite lifetime effect \rightarrow Mimics viscosity \rightarrow This should be subtracted(?)

Summary

Importance of hadronic dissipation

- Development of a hybrid model (Ideal hydro + hadronic afterburner) toward understanding of the QGP
- Systematic analyses of elliptic flow data using the hybrid model
 - Glauber vs. CGC, ε_{part} vs. ε_{R.P.}, spherical vs. deformed, 1st order vs. crossover, ...
- Comment on v_2/ϵ
- Toward quantifying viscous corrections